autogen_ext.models.replay#
- class ReplayChatCompletionClient(chat_completions: Sequence[str | CreateResult], model_info: ModelInfo | None = None)[source]#
基类:
ChatCompletionClient,Component[ReplayChatCompletionClientConfig]一个模拟的聊天完成客户端,它使用基于索引的方法重放预定义响应。
此类通过重放预定义的响应列表来模拟聊天完成客户端。它支持单个完成和流式响应。响应可以是字符串或 CreateResult 对象。客户端现在使用基于索引的方法访问响应,允许重置状态。
注意
响应可以是字符串或 CreateResult 对象。
- 参数:
chat_completions (Sequence[Union[str, CreateResult]]) – 要重放的预定义响应列表。
- 抛出:
ValueError("没有更多模拟响应可用") – 如果提供的输出列表已耗尽。
示例
简单的聊天完成客户端,用于返回预定义响应。
from autogen_core.models import UserMessage from autogen_ext.models.replay import ReplayChatCompletionClient async def example(): chat_completions = [ "Hello, how can I assist you today?", "I'm happy to help with any questions you have.", "Is there anything else I can assist you with?", ] client = ReplayChatCompletionClient(chat_completions) messages = [UserMessage(content="What can you do?", source="user")] response = await client.create(messages) print(response.content) # Output: "Hello, how can I assist you today?"
简单的流式聊天完成客户端,用于返回预定义响应
import asyncio from autogen_core.models import UserMessage from autogen_ext.models.replay import ReplayChatCompletionClient async def example(): chat_completions = [ "Hello, how can I assist you today?", "I'm happy to help with any questions you have.", "Is there anything else I can assist you with?", ] client = ReplayChatCompletionClient(chat_completions) messages = [UserMessage(content="What can you do?", source="user")] async for token in client.create_stream(messages): print(token, end="") # Output: "Hello, how can I assist you today?" async for token in client.create_stream(messages): print(token, end="") # Output: "I'm happy to help with any questions you have." asyncio.run(example())
使用 .reset 重置聊天客户端状态
import asyncio from autogen_core.models import UserMessage from autogen_ext.models.replay import ReplayChatCompletionClient async def example(): chat_completions = [ "Hello, how can I assist you today?", ] client = ReplayChatCompletionClient(chat_completions) messages = [UserMessage(content="What can you do?", source="user")] response = await client.create(messages) print(response.content) # Output: "Hello, how can I assist you today?" response = await client.create(messages) # Raises ValueError("No more mock responses available") client.reset() # Reset the client state (current index of message and token usages) response = await client.create(messages) print(response.content) # Output: "Hello, how can I assist you today?" again asyncio.run(example())
- component_type: ClassVar[ComponentType] = 'replay_chat_completion_client'#
组件的逻辑类型。
- component_provider_override: ClassVar[str | None] = 'autogen_ext.models.replay.ReplayChatCompletionClient'#
覆盖组件的提供者字符串。这应该用于防止内部模块名称成为模块名称的一部分。
- component_config_schema#
别名
ReplayChatCompletionClientConfig
- async create(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], tool_choice: Tool | Literal['auto', 'required', 'none'] = 'auto', json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) CreateResult[source]#
从列表中返回下一个完成。
- async create_stream(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], tool_choice: Tool | Literal['auto', 'required', 'none'] = 'auto', json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) AsyncGenerator[str | CreateResult, None][source]#
以流的形式返回下一个完成。
- actual_usage() RequestUsage[source]#
- total_usage() RequestUsage[source]#
- count_tokens(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = []) int[source]#
- remaining_tokens(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = []) int[source]#
- property capabilities: ModelCapabilities#
返回模拟能力。