autogen_ext.models.replay#

class ReplayChatCompletionClient(chat_completions: Sequence[str | CreateResult], model_info: ModelInfo | None = None)[source]#

基类: ChatCompletionClient, Component[ReplayChatCompletionClientConfig]

一个模拟聊天完成客户端,使用基于索引的方法重放预定义的响应。

此类通过重放预定义的响应列表来模拟聊天完成客户端。它支持单个完成和流式响应。响应可以是字符串或 CreateResult 对象。客户端现在使用基于索引的方法来访问响应,从而允许重置状态。

注意

响应可以是字符串或 CreateResult 对象。

参数:

chat_completions (Sequence[Union[str, CreateResult]]) – 要重放的预定义响应列表。

引发:

ValueError("没有更多模拟响应可用") – 如果提供的输出列表已耗尽。

示例

简单的聊天完成客户端,返回预定义的响应。

from autogen_core.models import UserMessage
from autogen_ext.models.replay import ReplayChatCompletionClient


async def example():
    chat_completions = [
        "Hello, how can I assist you today?",
        "I'm happy to help with any questions you have.",
        "Is there anything else I can assist you with?",
    ]
    client = ReplayChatCompletionClient(chat_completions)
    messages = [UserMessage(content="What can you do?", source="user")]
    response = await client.create(messages)
    print(response.content)  # Output: "Hello, how can I assist you today?"

简单的流式聊天完成客户端,返回预定义的响应

import asyncio
from autogen_core.models import UserMessage
from autogen_ext.models.replay import ReplayChatCompletionClient


async def example():
    chat_completions = [
        "Hello, how can I assist you today?",
        "I'm happy to help with any questions you have.",
        "Is there anything else I can assist you with?",
    ]
    client = ReplayChatCompletionClient(chat_completions)
    messages = [UserMessage(content="What can you do?", source="user")]

    async for token in client.create_stream(messages):
        print(token, end="")  # Output: "Hello, how can I assist you today?"

    async for token in client.create_stream(messages):
        print(token, end="")  # Output: "I'm happy to help with any questions you have."

    asyncio.run(example())

使用 .reset 重置聊天客户端状态

import asyncio
from autogen_core.models import UserMessage
from autogen_ext.models.replay import ReplayChatCompletionClient


async def example():
    chat_completions = [
        "Hello, how can I assist you today?",
    ]
    client = ReplayChatCompletionClient(chat_completions)
    messages = [UserMessage(content="What can you do?", source="user")]
    response = await client.create(messages)
    print(response.content)  # Output: "Hello, how can I assist you today?"

    response = await client.create(messages)  # Raises ValueError("No more mock responses available")

    client.reset()  # Reset the client state (current index of message and token usages)
    response = await client.create(messages)
    print(response.content)  # Output: "Hello, how can I assist you today?" again


asyncio.run(example())
classmethod _from_config(config: ReplayChatCompletionClientConfig) Self[source]#

从配置对象创建组件的新实例。

参数:

config (T) – 配置对象。

返回:

Self – 组件的新实例。

_to_config() ReplayChatCompletionClientConfig[source]#

转储创建与此实例配置匹配的组件新实例所需的配置。

返回:

T – 组件的配置。

actual_usage() RequestUsage[source]#
property capabilities: ModelCapabilities#

返回模拟功能。

async close() None[source]#
component_config_schema#

别名 ReplayChatCompletionClientConfig

component_provider_override: ClassVar[str | None] = 'autogen_ext.models.replay.ReplayChatCompletionClient'#

覆盖组件的提供程序字符串。这应该用于防止内部模块名称成为模块名称的一部分。

component_type: ClassVar[ComponentType] = 'replay_chat_completion_client'#

组件的逻辑类型。

计算消息中的token数量。
async create(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) CreateResult[source]#

从列表中返回下一个补全。

属性 create_calls: List[Dict[str, Any]]#

返回对 create 方法的调用所使用的参数。

async create_stream(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) AsyncGenerator[str | CreateResult, None][source]#

将下一个补全作为流返回。

属性 model_info: ModelInfo#
remaining_tokens(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = []) int[source]#
reset() None[source]#

将客户端状态和使用量重置为其初始状态。

set_cached_bool_value(value: bool) None[source]#
total_usage() RequestUsage[source]#