autogen_ext.models.azure#

class AzureAIChatCompletionClient(**kwargs: Unpack)[source]#

基类:ChatCompletionClient

适用于托管在 Azure AI Foundry 或 GitHub Models 上的模型的聊天补全客户端。更多信息请参阅此处

参数:
  • endpoint (str) – 要使用的端点。必填。

  • credential (union, AzureKeyCredential, AsyncTokenCredential) – 要使用的凭据。必填

  • model_info (ModelInfo) – 模型的模型家族和能力。必填。

  • model (str) – 模型的名称。如果模型托管在 GitHub Models 上,则必填。

  • frequency_penalty – (可选,浮点数)

  • presence_penalty – (可选,浮点数)

  • temperature – (可选,浮点数)

  • top_p – (可选,浮点数)

  • max_tokens – (可选,整数)

  • response_format – (可选,字面量 ["text", "json_object"])

  • stop – (可选,字符串列表)

  • tools – (可选,ChatCompletionsToolDefinition 列表)

  • tool_choice – (可选,字符串、ChatCompletionsToolChoicePreset 或 ChatCompletionsNamedToolChoice 的联合)

  • seed – (可选,整数)

  • model_extras – (可选,字符串到任意类型的字典)

要使用此客户端,您必须安装 azure 额外功能

pip install "autogen-ext[azure]"

以下代码片段展示了如何将客户端与 GitHub Models 结合使用

import asyncio
import os
from azure.core.credentials import AzureKeyCredential
from autogen_ext.models.azure import AzureAIChatCompletionClient
from autogen_core.models import UserMessage


async def main():
    client = AzureAIChatCompletionClient(
        model="Phi-4",
        endpoint="https://models.github.ai/inference",
        # To authenticate with the model you will need to generate a personal access token (PAT) in your GitHub settings.
        # Create your PAT token by following instructions here: https://githubdocs.cn/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
        credential=AzureKeyCredential(os.environ["GITHUB_TOKEN"]),
        model_info={
            "json_output": False,
            "function_calling": False,
            "vision": False,
            "family": "unknown",
            "structured_output": False,
        },
    )

    result = await client.create([UserMessage(content="What is the capital of France?", source="user")])
    print(result)

    # Close the client.
    await client.close()


if __name__ == "__main__":
    asyncio.run(main())

要使用流式传输,您可以使用 create_stream 方法

import asyncio
import os

from autogen_core.models import UserMessage
from autogen_ext.models.azure import AzureAIChatCompletionClient
from azure.core.credentials import AzureKeyCredential


async def main():
    client = AzureAIChatCompletionClient(
        model="Phi-4",
        endpoint="https://models.github.ai/inference",
        # To authenticate with the model you will need to generate a personal access token (PAT) in your GitHub settings.
        # Create your PAT token by following instructions here: https://githubdocs.cn/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
        credential=AzureKeyCredential(os.environ["GITHUB_TOKEN"]),
        model_info={
            "json_output": False,
            "function_calling": False,
            "vision": False,
            "family": "unknown",
            "structured_output": False,
        },
    )

    # Create a stream.
    stream = client.create_stream([UserMessage(content="Write a poem about the ocean", source="user")])
    async for chunk in stream:
        print(chunk, end="", flush=True)
    print()

    # Close the client.
    await client.close()


if __name__ == "__main__":
    asyncio.run(main())
add_usage(usage: RequestUsage) None[source]#
async create(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], tool_choice: Tool | Literal['auto', 'required', 'none'] = 'auto', json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) CreateResult[source]#

从模型创建单个响应。

参数:
  • messages (Sequence[LLMMessage]) – 要发送给模型的消息。

  • tools (Sequence[Tool | ToolSchema], 可选) – 与模型一起使用的工具。默认为 []。

  • tool_choice (Tool | Literal["auto", "required", "none"], 可选) – 单个 Tool 对象,用于强制模型使用,"auto" 允许模型选择任何可用工具,"required" 强制使用工具,"none" 禁用工具使用。默认为 "auto"。

  • json_output (Optional[bool | type[BaseModel]], 可选) – 是否使用 JSON 模式、结构化输出或两者都不使用。默认为 None。如果设置为 Pydantic BaseModel 类型,它将用作结构化输出的输出类型。如果设置为布尔值,它将用于确定是否使用 JSON 模式。如果设置为 True,请确保在指令或提示中指示模型生成 JSON 输出。

  • extra_create_args (Mapping[str, Any], 可选) – 传递给底层客户端的额外参数。默认为 {}。

  • cancellation_token (Optional[CancellationToken], 可选) – 用于取消的令牌。默认为 None。

返回:

CreateResult – 模型调用的结果。

async create_stream(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = [], tool_choice: Tool | Literal['auto', 'required', 'none'] = 'auto', json_output: bool | type[BaseModel] | None = None, extra_create_args: Mapping[str, Any] = {}, cancellation_token: CancellationToken | None = None) AsyncGenerator[str | CreateResult, None][source]#

从模型创建字符串块流,以 CreateResult 结束。

参数:
  • messages (Sequence[LLMMessage]) – 要发送给模型的消息。

  • tools (Sequence[Tool | ToolSchema], 可选) – 与模型一起使用的工具。默认为 []。

  • tool_choice (Tool | Literal["auto", "required", "none"], 可选) – 单个 Tool 对象,用于强制模型使用,"auto" 允许模型选择任何可用工具,"required" 强制使用工具,"none" 禁用工具使用。默认为 "auto"。

  • json_output (Optional[bool | type[BaseModel]], 可选) –

    是否使用 JSON 模式、结构化输出或两者都不使用。默认为 None。如果设置为 Pydantic BaseModel 类型,它将用作结构化输出的输出类型。如果设置为布尔值,它将用于确定是否使用 JSON 模式。如果设置为 True,请确保在指令或提示中指示模型生成 JSON 输出。

  • extra_create_args (Mapping[str, Any], 可选) – 传递给底层客户端的额外参数。默认为 {}。

  • cancellation_token (Optional[CancellationToken], 可选) – 用于取消的令牌。默认为 None。

返回:

AsyncGenerator[Union[str, CreateResult], None] – 生成器,产生字符串块并以 CreateResult 结束。

async close() None[source]#
actual_usage() RequestUsage[source]#
total_usage() RequestUsage[source]#
count_tokens(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = []) int[source]#
remaining_tokens(messages: Sequence[Annotated[SystemMessage | UserMessage | AssistantMessage | FunctionExecutionResultMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], *, tools: Sequence[Tool | ToolSchema] = []) int[source]#
property model_info: ModelInfo#
property capabilities: ModelInfo#
class AzureAIChatCompletionClientConfig[source]#

基类: dict

endpoint: str#
credential: AzureKeyCredential | AsyncTokenCredential#
model_info: ModelInfo#
frequency_penalty: float | None#
presence_penalty: float | None#
temperature: float | None#
top_p: float | None#
max_tokens: int | None#
response_format: Literal['text', 'json_object'] | None#
stop: List[str] | None#
tools: List[ChatCompletionsToolDefinition] | None#
tool_choice: str | ChatCompletionsToolChoicePreset | ChatCompletionsNamedToolChoice | None#
seed: int | None#
model: str | None#
model_extras: Dict[str, Any] | None#