终止#

在上一节中,我们探讨了如何定义代理,并将它们组织成可以解决任务的团队。然而,一个运行可能会永远持续下去,在许多情况下,我们需要知道何时停止它们。这就是终止条件的职责。

AgentChat 通过提供一个基础的 TerminationCondition 类和几个继承自它的实现来支持多种终止条件。

终止条件是一个可调用对象,它接收一个 BaseAgentEventBaseChatMessage 对象序列(自上次调用条件以来),如果对话应该终止,则返回一个 StopMessage,否则返回 None。一旦达到终止条件,必须通过调用 reset() 来重置它,然后才能再次使用。

关于终止条件的一些重要注意事项:

  • 它们是有状态的,但在每次运行(run()run_stream())完成后会自动重置。

  • 它们可以使用 AND 和 OR 运算符进行组合。

注意

对于群聊团队(例如,RoundRobinGroupChatSelectorGroupChatSwarm),终止条件在每个代理响应后被调用。虽然一个响应可能包含多个内部消息,但团队仅对单个响应中的所有消息调用一次其终止条件。因此,条件是使用自上次调用以来消息的“增量序列”来调用的。

内置终止条件

  1. MaxMessageTermination:在生成指定数量的消息后停止,包括代理消息和任务消息。

  2. TextMentionTermination:当消息中提及特定文本或字符串时停止(例如,“TERMINATE”)。

  3. TokenUsageTermination:当使用一定数量的提示或完成令牌时停止。这要求代理在其消息中报告令牌使用情况。

  4. TimeoutTermination:在指定持续时间(秒)后停止。

  5. HandoffTermination:当请求将任务移交给特定目标时停止。移交消息可用于构建模式,例如 Swarm。当您希望暂停运行并允许应用程序或用户在代理移交任务时提供输入时,这很有用。

  6. SourceMatchTermination:在特定代理响应后停止。

  7. ExternalTermination:允许从运行外部以编程方式控制终止。这对于 UI 集成很有用(例如,聊天界面中的“停止”按钮)。

  8. StopMessageTermination:当代理生成 StopMessage 时停止。

  9. TextMessageTermination:当代理生成 TextMessage 时停止。

  10. FunctionCallTermination:当代理生成包含名称匹配的 FunctionExecutionResultToolCallExecutionEvent 时停止。

  11. FunctionalTermination:当对最后一条消息增量序列的函数表达式评估为 True 时停止。这对于快速创建内置条件未涵盖的自定义终止条件很有用。

基本用法#

为了演示终止条件的特性,我们将创建一个由两个代理组成的团队:一个负责文本生成的主要代理和一个审查并提供生成文本反馈的评论代理。

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
    temperature=1,
    # api_key="sk-...", # Optional if you have an OPENAI_API_KEY env variable set.
)

# Create the primary agent.
primary_agent = AssistantAgent(
    "primary",
    model_client=model_client,
    system_message="You are a helpful AI assistant.",
)

# Create the critic agent.
critic_agent = AssistantAgent(
    "critic",
    model_client=model_client,
    system_message="Provide constructive feedback for every message. Respond with 'APPROVE' to when your feedbacks are addressed.",
)

让我们探讨终止条件如何在每次 runrun_stream 调用后自动重置,从而允许团队从上次中断的地方继续对话。

max_msg_termination = MaxMessageTermination(max_messages=3)
round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=max_msg_termination)

# Use asyncio.run(...) if you are running this script as a standalone script.
await Console(round_robin_team.run_stream(task="Write a unique, Haiku about the weather in Paris"))
---------- user ----------
Write a unique, Haiku about the weather in Paris
---------- primary ----------
Gentle rain whispers,  
Cobblestones glisten softly—  
Paris dreams in gray.
[Prompt tokens: 30, Completion tokens: 19]
---------- critic ----------
The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.

For example:
Soft rain whispers down,  
Cobblestones glisten softly —  
Paris dreams in gray.

This revision maintains the essence of your original lines while adhering to the traditional Haiku structure.
[Prompt tokens: 70, Completion tokens: 120]
---------- Summary ----------
Number of messages: 3
Finish reason: Maximum number of messages 3 reached, current message count: 3
Total prompt tokens: 100
Total completion tokens: 139
Duration: 3.34 seconds
TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=30, completion_tokens=19), content='Gentle rain whispers,  \nCobblestones glisten softly—  \nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=70, completion_tokens=120), content="The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.\n\nFor example:\nSoft rain whispers down,  \nCobblestones glisten softly —  \nParis dreams in gray.\n\nThis revision maintains the essence of your original lines while adhering to the traditional Haiku structure.")], stop_reason='Maximum number of messages 3 reached, current message count: 3')

对话在达到最大消息限制后停止。由于主要代理没有机会回应反馈,我们继续对话。

# Use asyncio.run(...) if you are running this script as a standalone script.
await Console(round_robin_team.run_stream())
---------- primary ----------
Thank you for your feedback. Here is the revised Haiku:

Soft rain whispers down,  
Cobblestones glisten softly —  
Paris dreams in gray.
[Prompt tokens: 181, Completion tokens: 32]
---------- critic ----------
The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! 

APPROVE
[Prompt tokens: 234, Completion tokens: 54]
---------- primary ----------
Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!
[Prompt tokens: 279, Completion tokens: 39]
---------- Summary ----------
Number of messages: 3
Finish reason: Maximum number of messages 3 reached, current message count: 3
Total prompt tokens: 694
Total completion tokens: 125
Duration: 6.43 seconds
TaskResult(messages=[TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=181, completion_tokens=32), content='Thank you for your feedback. Here is the revised Haiku:\n\nSoft rain whispers down,  \nCobblestones glisten softly —  \nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=234, completion_tokens=54), content='The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! \n\nAPPROVE'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=279, completion_tokens=39), content="Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!")], stop_reason='Maximum number of messages 3 reached, current message count: 3')

团队从中断的地方继续,允许主要代理回应反馈。

组合终止条件#

让我们展示如何使用 AND (&) 和 OR (|) 运算符组合终止条件,以创建更复杂的终止逻辑。例如,我们将创建一个团队,该团队在生成 10 条消息后停止,或者当评论代理批准一条消息时停止。

max_msg_termination = MaxMessageTermination(max_messages=10)
text_termination = TextMentionTermination("APPROVE")
combined_termination = max_msg_termination | text_termination

round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination)

# Use asyncio.run(...) if you are running this script as a standalone script.
await Console(round_robin_team.run_stream(task="Write a unique, Haiku about the weather in Paris"))
---------- user ----------
Write a unique, Haiku about the weather in Paris
---------- primary ----------
Spring breeze gently hums,  
Cherry blossoms in full bloom—  
Paris wakes to life.
[Prompt tokens: 467, Completion tokens: 19]
---------- critic ----------
The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, "Paris wakes to life," encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!

APPROVE
[Prompt tokens: 746, Completion tokens: 93]
---------- Summary ----------
Number of messages: 3
Finish reason: Text 'APPROVE' mentioned
Total prompt tokens: 1213
Total completion tokens: 112
Duration: 2.75 seconds
TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=467, completion_tokens=19), content='Spring breeze gently hums,  \nCherry blossoms in full bloom—  \nParis wakes to life.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=746, completion_tokens=93), content='The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, "Paris wakes to life," encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!\n\nAPPROVE')], stop_reason="Text 'APPROVE' mentioned")

对话在评论代理批准消息后停止,尽管它也可能在生成 10 条消息后停止。

或者,如果我们只想在两个条件都满足时停止运行,我们可以使用 AND (&) 运算符。

combined_termination = max_msg_termination & text_termination

自定义终止条件#

内置终止条件足以满足大多数用例。但是,在某些情况下,您可能需要实现一个不符合现有条件的自定义终止条件。您可以通过继承 TerminationCondition 类来做到这一点。

在此示例中,我们创建一个自定义终止条件,当进行特定的函数调用时停止对话。

from typing import Sequence

from autogen_agentchat.base import TerminatedException, TerminationCondition
from autogen_agentchat.messages import BaseAgentEvent, BaseChatMessage, StopMessage, ToolCallExecutionEvent
from autogen_core import Component
from pydantic import BaseModel
from typing_extensions import Self


class FunctionCallTerminationConfig(BaseModel):
    """Configuration for the termination condition to allow for serialization
    and deserialization of the component.
    """

    function_name: str


class FunctionCallTermination(TerminationCondition, Component[FunctionCallTerminationConfig]):
    """Terminate the conversation if a FunctionExecutionResult with a specific name is received."""

    component_config_schema = FunctionCallTerminationConfig
    component_provider_override = "autogen_agentchat.conditions.FunctionCallTermination"
    """The schema for the component configuration."""

    def __init__(self, function_name: str) -> None:
        self._terminated = False
        self._function_name = function_name

    @property
    def terminated(self) -> bool:
        return self._terminated

    async def __call__(self, messages: Sequence[BaseAgentEvent | BaseChatMessage]) -> StopMessage | None:
        if self._terminated:
            raise TerminatedException("Termination condition has already been reached")
        for message in messages:
            if isinstance(message, ToolCallExecutionEvent):
                for execution in message.content:
                    if execution.name == self._function_name:
                        self._terminated = True
                        return StopMessage(
                            content=f"Function '{self._function_name}' was executed.",
                            source="FunctionCallTermination",
                        )
        return None

    async def reset(self) -> None:
        self._terminated = False

    def _to_config(self) -> FunctionCallTerminationConfig:
        return FunctionCallTerminationConfig(
            function_name=self._function_name,
        )

    @classmethod
    def _from_config(cls, config: FunctionCallTerminationConfig) -> Self:
        return cls(
            function_name=config.function_name,
        )

让我们使用这个新的终止条件,当评论代理使用 approve 函数调用批准消息时停止对话。

首先,我们创建一个简单的函数,当评论代理批准消息时将调用该函数。

def approve() -> None:
    """Approve the message when all feedbacks have been addressed."""
    pass

然后我们创建代理。评论代理配备了 approve 工具。

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
    temperature=1,
    # api_key="sk-...", # Optional if you have an OPENAI_API_KEY env variable set.
)

# Create the primary agent.
primary_agent = AssistantAgent(
    "primary",
    model_client=model_client,
    system_message="You are a helpful AI assistant.",
)

# Create the critic agent with the approve function as a tool.
critic_agent = AssistantAgent(
    "critic",
    model_client=model_client,
    tools=[approve],  # Register the approve function as a tool.
    system_message="Provide constructive feedback. Use the approve tool to approve when all feedbacks are addressed.",
)

现在,我们创建终止条件和团队。我们使用诗歌创作任务运行团队。

function_call_termination = FunctionCallTermination(function_name="approve")
round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=function_call_termination)

# Use asyncio.run(...) if you are running this script as a standalone script.
await Console(round_robin_team.run_stream(task="Write a unique, Haiku about the weather in Paris"))
await model_client.close()
---------- user ----------
Write a unique, Haiku about the weather in Paris
---------- primary ----------
Raindrops gently fall,  
Cobblestones shine in dim light—  
Paris dreams in grey.  
---------- critic ----------
This Haiku beautifully captures a melancholic yet romantic image of Paris in the rain. The use of sensory imagery like "Raindrops gently fall" and "Cobblestones shine" effectively paints a vivid picture. It could be interesting to experiment with more distinct seasonal elements of Paris, such as incorporating the Seine River or iconic landmarks in the context of the weather. Overall, it successfully conveys the atmosphere of Paris in subtle, poetic imagery.
---------- primary ----------
Thank you for your feedback! I’m glad you enjoyed the imagery. Here’s another Haiku that incorporates iconic Parisian elements:

Eiffel stands in mist,  
Seine's ripple mirrors the sky—  
Spring whispers anew.  
---------- critic ----------
[FunctionCall(id='call_QEWJZ873EG4UIEpsQHi1HsAu', arguments='{}', name='approve')]
---------- critic ----------
[FunctionExecutionResult(content='None', name='approve', call_id='call_QEWJZ873EG4UIEpsQHi1HsAu', is_error=False)]
---------- critic ----------
None
TaskResult(messages=[TextMessage(source='user', models_usage=None, metadata={}, content='Write a unique, Haiku about the weather in Paris', type='TextMessage'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=30, completion_tokens=23), metadata={}, content='Raindrops gently fall,  \nCobblestones shine in dim light—  \nParis dreams in grey.  ', type='TextMessage'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=99, completion_tokens=90), metadata={}, content='This Haiku beautifully captures a melancholic yet romantic image of Paris in the rain. The use of sensory imagery like "Raindrops gently fall" and "Cobblestones shine" effectively paints a vivid picture. It could be interesting to experiment with more distinct seasonal elements of Paris, such as incorporating the Seine River or iconic landmarks in the context of the weather. Overall, it successfully conveys the atmosphere of Paris in subtle, poetic imagery.', type='TextMessage'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=152, completion_tokens=48), metadata={}, content="Thank you for your feedback! I’m glad you enjoyed the imagery. Here’s another Haiku that incorporates iconic Parisian elements:\n\nEiffel stands in mist,  \nSeine's ripple mirrors the sky—  \nSpring whispers anew.  ", type='TextMessage'), ToolCallRequestEvent(source='critic', models_usage=RequestUsage(prompt_tokens=246, completion_tokens=11), metadata={}, content=[FunctionCall(id='call_QEWJZ873EG4UIEpsQHi1HsAu', arguments='{}', name='approve')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='critic', models_usage=None, metadata={}, content=[FunctionExecutionResult(content='None', name='approve', call_id='call_QEWJZ873EG4UIEpsQHi1HsAu', is_error=False)], type='ToolCallExecutionEvent'), ToolCallSummaryMessage(source='critic', models_usage=None, metadata={}, content='None', type='ToolCallSummaryMessage')], stop_reason="Function 'approve' was executed.")

您可以看到,当评论代理使用 approve 函数调用批准消息时,对话停止了。